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Abstract
We consider eigenfunctions of the Laplace–Beltrami operator on special
surfaces of revolution. For this separable system, the nodal domains of the
(real) eigenfunctions form a checkerboard pattern, and their number νn is
proportional to the product of the angular and the ‘surface’ quantum numbers.
Arranging the wavefunctions by increasing values of the Laplace–Beltrami
spectrum, we obtain the nodal sequence, whose statistical properties we study.
In particular, we investigate the distribution of the normalized counts νn

n
for

sequences of eigenfunctions with K � n � K + �K , where K,�K ∈ N. We
show that the distribution approaches a limit as K,�K → ∞ (the classical
limit), and study the leading corrections in the semi-classical limit. With this
information, we derive the central result of this work: the nodal sequence of a
mirror-symmetric surface is sufficient to uniquely determine its shape (modulo
scaling).

PACS numbers: 02.30.Zz, 03.65.Ge, 03.65.Sq

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Nodal domains of a real, continuous function are the maximally connected domains where
the function does not change its sign. The nodal domains of eigenfunctions of the Laplacian
on compact domains have been studied since Chladni first observed the nodal structure of
vibration modes of thin plates (eigenfunctions of the bi-harmonic operator), in the early years
of the 19th century. In this paper we are not interested in the geometric properties of nodal
domains of Laplacian eigenfunctions, but rather in their count.

Following Courant, we order the eigenfunctions so that the corresponding eigenvalues
form a non-decreasing sequence. Denoting by νn the number of nodal domains of the nth
eigenfunction, we form the normalized nodal sequence ξn := νn

n
, n ∈ N. Courant’s theorem

[1] guarantees that ξn � 1, and we would like to study the distribution of the values of ξn
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in the unit interval (0, 1]. In previous papers [2, 3] the distribution of ξn for various planar
domains and 2-manifolds were studied, and it was concluded that the features of the distribution
depend crucially on the type of classical dynamics it supports. If the classical dynamics on the
manifold (geodesics) are integrable (and quantum mechanically separable—for such systems,
actually, quantum separability is equivalent to classical separability [4]), the limit distribution
exists, and displays certain features which are common to all such systems. On the other
hand, if the classical dynamics is chaotic, the distribution of the normalized nodal sequence is
well reproduced by using a random wave model for the eigenfunctions [5]. Bogomolny and
Schmit computed the mean and the distribution by using ideas from percolation theory [6].
Investigations on nodal domain statistics for chaotic maps with connections to percolation,
involving the theory of stochastic Loewner evolution, have been made by Keating, Marklof
and Williams [7].

The first work with implications on the geometric content of the nodal sequence was of
Smilansky and Sankaranarayanan [3], where it was shown that the aspect ratio of a rectangular
domain on the plane (with Dirichlet boundary conditions) can be determined by counting its
nodal domains. In [8] the nodal sequence for eigenfunctions of the Laplace–Beltrami operator
for ‘simple’ surfaces of revolution was discussed. A trace formula for the nodal count was
derived, and was shown to depend explicitly both on some mean geometric properties of the
surface, as well as the lengths of its geodesics. In spite of the formal similarity between the
spectral and the nodal trace formulae, the geometrical information is included in different
ways. Further studies [9–11] have shown that isospectral domains have different nodal
sequences, thus supporting the conjecture that the geometrical information is stored in the
nodal and spectral sequences in different ways. In the present work we go one step further and
inquire whether one can deduce the shape (up to scaling) of a domain given the distribution
of the normalized number of nodal domains, or, paraphrasing the classical spectral inversion
question posed by Kac [12], can one count the shape of a drum? It must be stressed that
the only use of the spectral information is lexicographical—it is ordered as a non-decreasing
sequence. Otherwise, there is no reference to the actual values of the eigenvalues.

In this paper we shall confine ourselves to the integrable (and separable) case, particularly
to a special class of surfaces of revolution. We present new results which pertain to the
distribution P(ξ, IK) of the normalized nodal counts of eigenfunctions with indices n in the
interval IK = [K,K + �K]. In [2] it was shown that there exists a limit distribution P(ξ)

when the size of the index interval IK becomes infinite (corresponding to the semi-classical
limit, K → ∞). We provide the leading order term of the difference between P(ξ, IK) and
the limit distribution P(ξ):

P(ξ, IK) = P(ξ) +
1√
K

P1(ξ) + O

(
1

K

)
. (1)

We show that the knowledge of the function P(ξ) and P1(ξ) suffices for nodal domain
inversion, provided that the surface is mirror symmetric. In other words, given the normalized
nodal sequence, we can deduce uniquely the profile function of the surface of revolution
(provided it is smooth and symmetric). Numerical simulations were carried out for ellipsoids
of revolution, which illustrate our theoretical findings.

In what follows we shall use the classical notation of asymptotic analysis; the standard
‘O, o’ order notation, the symbol ‘∼’ standing for an asymptotic relation, the symbol ‘�’
denoting the same order of magnitude and the symbol ‘�’ denoting greater order of magnitude.
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2. Surfaces of revolution

We consider surfaces of revolution M in R
3, which are generated by the complete rotation of

the line y = f (x), x ∈ I := [−1, 1], about the x axis. We confine our attention to a special
subset of functions which satisfy the following requirements:

(i) f 2 is analytic in I, and vanishes at ±1, where f (x) ∼ a±(1 ∓ x)1/2, with a± > 0. This
requirement guarantees that M is compact, has no boundary and is smooth even at the
points where it is intersected by the axis of rotation.

(ii) The second derivative of f is strictly negative, so that f (x) has a single maximum at some
x = xmax, where it reaches the value fmax. This requirement guarantees the convexity
of M.

Surfaces which satisfy the above requirements will be referred to as simple surfaces
of revolution, and are convex, mild deformations of ellipsoids of revolution. The induced
Riemannian metric on M is

ds2 = (1 + f ′(x)2) dx2 + f (x)2 dθ2, (2)

where the prime denotes differentiation with respect to x, and θ ∈ [0, 2π) is the azimuthal
angle.

In the proceeding subsections we shall review the properties of geodesics (classical
mechanics) and the spectrum of the Laplace–Beltrami operator (quantum mechanics) on M.

2.1. The geodesics

The geodesics on M are the classical trajectories of free motion. They can be derived from
the Euler–Lagrange variation principle with the Lagrangian

L = 1
2 ((1 + f ′(x)2) ẋ2 + f (x)2θ̇2), (3)

where a dot above denotes time derivative. The angular momentum along the axis of rotation
f (x)2θ̇ is conserved, and we shall denote its value by m. The momentum conjugate to x is
px = (1 + f ′(x)2)ẋ, and the conserved energy is

E = (1 + f ′(x)2) ẋ2 +
m2

f (x)2
. (4)

It is convenient to introduce the action variable n,

n(E,m) := 1

2π

∮
px dx = 1

π

∫ x+

x−

√
Ef (x)2 − m2

√
1 + f ′(x)2

f (x)
dx. (5)

Here, x± are the classical turning points, where Ef (x)2 − m2 = 0, with x− � xmax � x+,
which correspond to two meridians γ± (projections of caustics onto M) between which all
geodesics with m 
= 0 wind around M. Real classical trajectories exist only if E > (m/fmax)

2.
The convexity of M guarantees that the action variables (n,m) along with their conjugate
angle variables constitute a global coordinate system on phase space [13].

The classical Hamiltonian H(n,m) in the action–angle representation is obtained by
inverting (5) to express the energy in terms of n and m. H(n,m) is a homogeneous function of
order 2, i.e. H(λn, λm) = λ2H(n,m), λ > 0 [14]. It suffices, therefore, to study the function
n(m) := n(1,m), which defines a smooth line � in the (n,m)-plane (the projection of the unit
energy shell on the action plane). The function n(m) is one of the main building blocks of
the semi-classical theory which will be used throughout this work. We shall list some of its
properties which will be used in the following:

3
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(i) The reflection symmetry, n(−m) = n(m), follows from definition (5). Thus, we restrict
our attention to m � 0 when referring to �.

(ii) n(|m|) is defined in the interval Iµ = (0,mmax], where mmax = fmax. In this interval,
n(m) is analytic and decreases monotonically since

dn(m)

dm
= −m

π

∫ x+

x−

1√
f (x)2 − m2

√
1 + f ′(x)2

f (x)
dx � 0. (6)

(iii) n(m) assumes its maximum value at m = 0,

n(0) = 1

π

∫ 1

−1

√
1 + f ′(x)2 dx = L

π
, (7)

where L is the length of the rotating line. We show in appendix A that n(m) is not analytic
at m = 0, and in that vicinity

n(m) ∼ L
π

− |m|. (8)

At the other endpoint, n(m) vanishes,

n(m) ∼
√

2

ω
(mmax − m), ω = |2mmaxf

′′(xmax)|. (9)

(iv) The phase space volume is

1

(2π)2

∫
R2

+


(E − H(n,m)) dv = 2E

∫ mmax

0
n(m) dm = 2AE. (10)

A is the area enclosed between the line � and the n and m axes. It is related to the area
of M by ||M|| = 8πA.

(v) The computation of the higher derivatives of n(m) cannot proceed simply by taking the
derivatives of (6)—the resulting integrals diverge. To overcome this difficulty the integral
defining n(m) needs regularization [15]. This is done in appendix A.

(vi) Some authors (e.g., [14]) prefer to use the Clairaut integral I instead of the angular
momentum. They are related by

I = m√
2E

. (11)

The twist condition is introduced in [14] to distinguish the class of simple surfaces of
revolution, for which the dynamics are particularly simple. In the present notation, the twist
condition is expressed by the requirement

∂2n(E,m)

∂m2

= 0, 0 < |m| � mmax, (12)

i.e. n(m) is either convex or concave on (0,mmax).
Throughout this paper we shall use the ellipsoid of revolution to illustrate our findings

graphically. The ellipsoids are generated by f (x)2 = ε2(1 − x2), with ε > 0 being the
eccentricity of the generating semi-ellipse.

For the ellipsoid, the action variable n(m) reduces to

n(m) = 2x2
±

π

∫ 1

0

√
1 − t2

1 − x2±t2

√
1 − (1 − ε2)x2±t2 dt, (13)

4
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Figure 1. The curves � for ellipsoids of revolution with eccentricities ε = 0.5 (prolate), ε = 1
(a sphere) and ε = 2 (oblate) are shown as dashed line, solid line and sparsely dashed line,
respectively.

where x± = ±
√

1 − m2/ε2 are the classical turning points. This integral can be evaluated in
terms of elliptic functions giving

n(m) = 2

π

1

ε
√

b

[
bE

(
1 − ε2

b

)
− (1 − ε2)m2 K

(
1 − ε2

b

)
− ε4

(
1 − ε2

m2
, 1 − ε2

b

)]
,

(14)

where b = ε4 + (1 − ε2)m2, and

K(k) :=
∫ π/2

0
(1 − k sin2 θ)−1/2 dθ,

E(k) :=
∫ π/2

0
(1 − k sin2 θ)1/2 dθ,

(k, l) :=
∫ π/2

0
(1 − k sin2 θ)−1(1 − l sin2 θ)−1/2 dθ

are the complete elliptic integrals of the first, second and third kinds, respectively.
Figure 1 shows the functions � := n(m) for a few ellipsoids of revolution

2.2. The Laplace–Beltrami operator

The Laplace–Beltrami operator on M reads

� = − 1

f (x)σ (x)

∂

∂x

f (x)

σ (x)

∂

∂x
− 1

f (x)2

∂2

∂θ2
, (15)

where σ(x) :=
√

1 + f ′(x)2. The domain of � are � ∈ W 2
2 (I × S

1) (the class of L2

wavefunctions all of whose partial derivatives, up to second, are also L2), required to be
2π -periodic in θ . Under these conditions, the operator is self-adjoint, and its spectrum is
discrete and non-negative. � is separable, and the eigenfunctions can be written in the product
form �(x, θ) = exp(imθ)ψm(x), where m ∈ Z. It is convenient to introduce a new variable
t, through

dt = σ(x)

f (x)
dx, (16)

5
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which maps the interval [−1, 1] to R ∪ {∞}. For any m and eigenvalue En,m, the spectral
equation for (15) reduces to the Sturm–Liouville ODE[

− d2

dt2
+ (m2 − En,mf (x(t))2)

]
ψn,m(t) = 0. (17)

The spectrum of the Laplace–Beltrami operator is doubly degenerate for all m 
= 0, with
En,−m = En,m. The semi-classical spectrum is constructed by using the Einstein–Brillouin–
Keller approximation [14],

Escl
n,m = H

(
n + 1

2 ,m
)
, n ∈ N0, m ∈ Z, (18)

where H(n,m) is the classical Hamiltonian defined in terms of the action variables. The
semi-classical approximation for the spectral sequence with m = 0 assumes a very simple
form. Since

n +
1

2
=

√
E

π

∫ 1

−1

√
1 + f ′(x)2 dx =

√
E

π
L, (19)

the semi-classical quantization condition reads

Escl
n,0 =

[
π
(
n + 1

2

)
L

]2

, n ∈ N0. (20)

Because of the degeneracy of the spectrum, we have to choose a particular representation
of the wavefunctions. We do this by associating cos(mθ) with m � 0 and sin(mθ) for m < 0,
i.e.,

�n,m(x, θ) = ψn,m(x)

{
sin(mθ) if m < 0
cos(mθ) if m � 0.

(21)

The nodal pattern of � is that of a checkerboard, typical for separable systems (as a
matter of fact, the nodal pattern remains a checkerboard for any linear combination of the
basis functions. It is only rotated around the symmetry axis of the surface). For m = 0, the
number of nodal domains is νn,0 = n+ 1, and for all other m, νn,m = 2(n+ 1)|m|. In summary,

νn,m = (n + 1)(2|m| + δm,0). (22)

To end this section we illustrate its content by an application to the simplest surface—the
sphere, considered here as a surface of revolution with f (x)2 = 1 − x2.

For the sphere, the action variable (5) takes the simple form

n(E,m) = 2
√

E

π

∫ √
1−m2/E

0

√
1 − m2/E − x2

1 − x2
dx =

√
E − |m|. (23)

Thus, H(n,m) = (n + |m|)2, and the EBK quantization for the spectrum is En,m = (
l + 1

2

)2 ∼
l(l + 1), where l := n + |m|. The (2l + 1)-fold degeneracy follows immediately by counting
the number of integer pairs (n,m) which satisfy l = n + |m|.

Turning to the quantum description, the variable t defined in (16) can be explicitly
computed, x = tanh t . Writing E = l(l + 1), l ∈ N0, transforms (17) to[

− d2

dt2
+

(
m2 − l(l + 1)

cosh2 t

)]
ψl,m(t) = 0, (24)

which is equivalent to the Legendre equation. Finally, the number of nodal domains of
spherical harmonics is known, and coincides with (22) when the identification l = n + |m| is
made.

6
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3. Counting nodal domains

We shall start this section by reviewing some of the general definitions and results obtained in
[2], where the limit distribution of the normalized nodal counts was first studied. We shall then
derive the next to leading term, and show that it provides further information on the geometry
of M.

The nodal structure of the wavefunctions was reviewed in the preceding section, and an
explicit expression for the dependence of the number of nodal domains νn,m on the quantum
numbers (n,m) is given in (22).

The object which is investigated in this work is the nodal sequence which is defined as
follows: arrange the spectrum as a non-decreasing sequence. This amounts to assigning to
each pair of quantum numbers (n,m) a counting index N (n,m), which gives the number of
eigenvalues of the Laplace–Beltrami operator (counted with multiplicity) which are strictly
smaller than the eigenvalue En,m, i.e. N (n,m) := #{E ∈ Spec(�) : E < En,m}. Obviously
N (n,m) = N(En,m), where N(E) is the spectral counting function.

To account for the spectral degeneracy, we modify the above definition for |m| 
= 0, so
that N (n, |m|) = N (n,−|m|)+1. The nodal sequence is the sequence of nodal counts ordered
by N : {νN }∞N=1. By this convention, the systematic degeneracy of the spectrum is taken care
of. In general, however, accidental degeneracies cannot be excluded. The ordering ambiguity
may appear, e.g., when the degeneracy class involves states with different (non-negative) m
values, such as, e.g., for the sphere. In this case, a possible way to remove this problem is to
consider the sphere as a limiting case of an ellipsoid with (a positive) eccentricity approaching
one (here we use the particular convention for the eccentricity, for which it equals unity for
the sphere, and not zero). The m degeneracy is removed for any ellipsoid, and the order of the
eigenvalues is monotonic in |m| for arbitrary small eccentricity. Similar constructions can be
used for other accidental degeneracies.

Courant’s theorem [1] ensures that, for any ordering of the eigenfunctions in the
degeneracy classes

νN (n,m) � N (n,m). (25)

It is natural, therefore, to define the normalized nodal sequence

ξN := νN

N
, 0 < ξN � 1. (26)

We study the distribution of the values of the normalized nodal sequence for a finite index
set, N ∈ {K, . . . , K + �K},

P(ξ, IK) := 1

�K

∑
(n,m)∈N0×Z

χIK
(N (n,m))δ(ξ − ξN (n,m)), (27)

and χIK
the characteristic function of the interval IK ,

χIK
(x) =

{
1 if K � x � K + �K

0 otherwise.
(28)

Since P(ξ, IK) is not a function but a distribution over the interval (0, 1), one must take
care in its manipulations. Most of the limits and estimates are considered in the weak sense
(e.g. [16]). In some sections though, related distributions are viewed as functions (or to be more
precise, the functions whose values these distributions take on some subinterval of (0, 1)). In
other cases they will be manipulated as functions after an appropriate regularization.

In [2], it was assumed for convenience that IK grows linearly in K,�K = gK, g being
a positive constant (such that gK ∈ N). The existence of the limiting distribution P(ξ) of

7
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P(ξ, IK) in the K → ∞ limit (the classical limit) was proved, and its universal features were
presented. The existence can be proven by showing

1

�K

∑
j∈IK

ϕ(ξj ) −→
∫ 1

0
P(ξ)ϕ(ξ) dξ (29)

uniformly in g, for any smooth and compactly supported test function ϕ on (0, 1). Here, we
shall repeat the derivation in more detail, and also compute the difference between P(ξ, IK)

and P(ξ) to leading order in 1√
K

(again, for the linear case �K = gK—the superlinear case
�K � K , follows trivially).

We rewrite (27) as a sum of an isotropic component, to which only isotropic states (with
m = 0) contribute, and an anisotropic component (with m 
= 0),

P(ξ, IK) = Pm=0(ξ, IK) + Pm
=0(ξ, IK),

Pm=0(ξ, IK) = 1

gK

∑
n

χIK
(N (n, 0)) δ

(
ξ − n + 1

N (n, 0)

)
, (30)

Pm
=0(ξ, IK) = 1

gK

∑
n,m
=0

χIK
(N (n,m)) δ

(
ξ − 2(n + 1)|m|

N (n,m)

)
.

Since we are interested in the semi-classical limit, we are allowed to make the following
approximate steps, which incur errors of order higher than O

(
1√
K

)
.

(i) The spectrum is approximated by En,m ∼ Escl
n,m = H

(
n + 1

2 ,m
)
, as m2 + n2 → ∞, which

introduces a relative error bounded by O
(

1
En,m

)
[17]. In particular, as was shown in (20),

Escl
n,0 = [π(n+ 1

2 )

L
]2

.
(ii) To the same order, N (n,m) can be replaced by the first term in the Weyl series [14],

N (n,m) = 2AH

(
n +

1

2
,m

)(
1 + O

(
1

E
3
4
n,m

))
, (31)

where A is defined in (10).

Introducing these approximations in (30), we find that Pm=0(ξ, IK) is O
(

1
K

)
(in the weak

sense) and therefore we defer its computation to a later stage. The sums over (n,m) in (30)
are computed using the Poisson summation formula, decomposing Pm
=0(ξ, IK) in a smooth
and an oscillatory part,

Pm
=0(ξ, IK) = P̄ (ξ, IK) + Q(ξ, IK) := P̄ (ξ, IK) +
∑

(N,M)∈Z2\{0}
QN,M(ξ, IK), (32)

where the Fourier coefficients are

QN,M(ξ, IK) ∼ 2

gK

∫ ∞

1
2

dm

∫ ∞

− 1
2

e2π i(Mm+Nn)χIK

(
2AH

(
n +

1

2
,m

))

× δ

(
ξ − 2(n + 1)m

2AH
(
n + 1

2 ,m
)
)

dn, (33)

and obviously P̄ (ξ, IK) = Q0,0(ξ, IK).
The leading term in the above sum is the smooth term P̄ (ξ, IK) which we calculate first.

The oscillatory terms are of lower order in 1√
K

and will be computed in a separate subsection.

8
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Proceeding with the smooth part, we shift the integration variable n �→ n + 1
2 and write

the result as

P̄ (ξ, IK) ∼ 2

gK

∫ ∞

1
2

dm

∫ ∞

0
χIK

(2AH(n,m))δ

(
ξ −

(
n + 1

2

)
m

AH(n,m)

)
dn. (34)

We change the integration variables (n,m) �→ (E, s), where E = H(n,m), and s is defined
through the relations

dE = ωndn + ωmdm, ωn = ∂H(n,m)

∂n
, ωm = ∂H(n,m)

∂m
,

ds = −ωmdn + ωndm

ω2
n + ω2

m

. (35)

Note that with this definition the Jacobian is unity, and dndm = dEds. Thus, (34) is reduced
to

P̄ (ξ, IK) ∼ 2

gK

∫ K(1+g)

2A

K
2A

dE
∫

�




(
m(s) − 1

2
√
E

)
δ

(
ξ − n(s)m(s)

A
− m(s)

2
√
EA

)
ds, (36)

where 
(x) is the Heaviside step function. The pair of functions {n(s),m(s)} constitute a
parametric representation of the line �, along which H(n(s),m(s)) = 1. This allows the
scaling by

√
E which appears in (36).

The above expression can be further reduced by the following observation. On the line
� we have ωndn + ωmdm = 0, which induces a symplectic structure (where n and m play the
roles of canonically conjugate variables and s is the ‘time’):

dm(s)

ds
= ωn,

dn(s)

ds
= −ωm. (37)

Another important identity follows from the fact that H(n,m) is homogeneous of order 2 in
(n,m). We can write n = F(H,m), and n√

H
= F

(
1, m√

H

)
, from which we deduce that on the

line {H(n,m) = 1},
dm(s)

ds
= ωn = 2

n(m) − mn′(m)
, (38)

where n′(m) := dn(m)

dm
. Thus, (36) takes the form

P̄ (ξ, IK) ∼ 1

gK

∫ K(1+g)

2A

K
2A

dE
∫ mmax

1
2
√
E

|n(m) − mn′(m)|δ
(

ξ − n(m)m

A
− m

2
√
EA

)
dm. (39)

A similar transformation can also be applied in the computation of the oscillatory integrals
QN,M(ξ, IK).

3.1. The limit distribution

The limit distribution is the leading term in the expansion of the integral (36) in powers of
1√
K

. Taking the limit K → ∞, the E-integral can be directly performed, resulting with

P(ξ) = 1

A

∫
�

δ

(
ξ − m(s)n(s)

A

)
ds. (40)

This expression allows a simple geometrical interpretation: the product n(s)m(s) is the area
of the rectangle whose vertices are the points (m(s), n(s)) on �, its projections (m(s), 0) and
(0, n(s)) on the two axes and the origin (see figure 2). P(ξ) is the probability distribution
of the areas of these rectangles (scaled by A, and therefore smaller than 1). The areas of

9
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m

n
m

Figure 2. The geometric interpretation of P(ξ) (computed for an ellipsoid of revolution with
eccentricity ε = 0.5).

rectangles which are based on points which are either near the m or the n axes approach 0.
Since � is either convex or concave, there exists a unique point where ξ reaches the maximal
value of scaled areas, ξmax. Thus, P(ξ) ≡ 0 for ξ � ξmax.

Changing integration variables using (38), we get

P(ξ) = 1

2A

∫ mmax

0
δ

(
ξ − mn(m)

A

)
|n(m) − mn′(m)|dm. (41)

Integrating (41), we get

P(ξ) =

⎧⎪⎨
⎪⎩

0 ξ � ξmax,

1

2

∑∣∣∣∣n(m) − mn′(m)

n(m) + mn′(m)

∣∣∣∣
ξ= mn(m)

A

ξ < ξmax.
(42)

The sum is over the real values of m > 0 which satisfy ξ = mn(m)

A . In the vicinity of ξmax,
typically two solutions coalesce, leading to a square-root singularity of P(ξ) at that point.
The vanishing of P(ξ) in the interval [ξmax, 1], and the square-root singularity at ξmax are the
universal features which characterize the nodal domain distributions for separable systems (in
2D) in general, and simple surfaces of revolution, in particular. Using (41), it is easy to check
normalization,

∫ 1
0 P(ξ) dξ = 1.

Form (42) for the ξ distribution can be further simplified since for simple surfaces of
revolution the twist condition (12) is satisfied, and there are only two values of m which solve
ξ = mn(m)

A . Denote them by m−(ξ) and m+(ξ) (m−(ξ) � m+(ξ)). They coalesce at ξ = ξmax.
The value of m where the sole maximum of mn(m) occurs is denoted by m0 = m±(ξmax). The
two functions m+(ξ) and m−(ξ), together, provide a parametric representation of the curve �,
since n±(ξ) = Aξ

m±(ξ)
, where 0 < ξ < ξmax. This parametrization will be used often in the

subsequent discussion.
To leading order, m±(ξ) ∼ m0(1 ±√|ζ |), where ζ = ξ−ξmax

ξmax
, and so from (42) we deduce

that, in the left neighbourhood of ξmax

P(ξ) ∼ 1√
1 − ξ/ξmax

. (43)

One can re-arrange (42) to obtain another expression for the limiting distribution. For
ξ < ξmax,

P(ξ) = ξ
d

dξ
log

m−(ξ)

m+(ξ)
. (44)

10
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This expression is quite revealing, because it can be inverted to provide the function m−(ξ)

m+(ξ)
based

on the information derived only from the nodal sequence. We shall show below that the next to
leading expression in the expansion of P(ξ, IK) provides another relation between m−(ξ) and
m+(ξ). On solving the two equations, we obtain a complete parametric representation of the
curve � (or n(m)). We shall also show that � defines uniquely the function f (x), when f (x)

is symmetric about x = 0. This will prove our claim that the nodal sequence for symmetric
surfaces of revolution can be inverted and provide the ‘shape of the drum’!

The behaviour of P(ξ) near ξ = 0 can be easily extracted using (44). Since ξ → 0
implies either m → 0 or n(m) → 0 along �, we may use the linear approximations for n(m)

as given by (8) and (9), respectively. The equation mn(m)

A = ξ reduces to a quadratic equation,
and its solutions define the two branches m−(ξ) and m+(ξ) as

m−(ξ) ∼ L
2π

(
1 −

√
1 − 2ξ

2Aπ2

L2

)
,

m+(ξ) ∼ mmax

2

⎛
⎝1 +

√
1 − 2ξ

A
√

2ω

m2
max

⎞
⎠ .

(45)

Substituting in (44), we get

P(ξ) ∼ 1

2

⎛
⎝ 1√

1 − 2ξ

η−

+
1√

1 − 2ξ

η+

⎞
⎠ , (46)

where

η− = n(0)2

2A
= L2

2π2A
, η+ = |n′(mmax)|m2

max

2A
= m2

max√
2ωA

, η0 = m2
max

2A
. (47)

Relation (46) shows that limξ→0+ P(ξ) = 1, independently of the surface under
consideration—another universal feature to be added to the aforementioned ones. Moreover,
it shows that one can extract the dimensionless geometric parameters η− and η+ from P(ξ)

in the neighbourhood of ξ = 0. They are directly related to the properties of the line
which generates M through its length, maximum distance from the axis of revolution and its
curvature at the maximum. Note, however, that the nodal sequence is composed of integers,
and in contrast to the spectral sequence it is invariant under isotropic scalings onM. Therefore,
only dimensionless quantities can be extracted from it. Here, all the lengths are expressed in
units of

√
A. (The parameter η0 in (47) is another dimensionless parameter which we define

here even though it will appear only later.)
The limit distributions for three ellipsoids of revolution are shown in figure 3. Computing

ξmax as a function of the eccentricity reveals that ξmax(ε) is a monotonically decreasing function
which varies between ξmax(0) ≈ 0.550 and ξmax(∞) ≈ 0.464 as shown in figure 4. Thus, one
can deduce the eccentricity from the nodal sequence just by determining the support of P(ξ).

As another application of (44), and as an illustration, we derive P(ξ) for the sphere. From
(A.12) we get that for the sphere n(m) = 1 − m which immediately gives

P(ξ) = 1√
1 − 2ξ

, 0 < ξ <
1

2
. (48)

The same result can also be obtained directly. The spectrum consists of the values
En,m = n(n + 1) which are independent of m (|m| � n) and are (2n + 1)-fold degenerate. The
eigenfunctions are the spherical harmonics, and for the sake of counting their nodal domains,

11
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P

Figure 3. P(ξ) for ellipsoids of revolution with eccentricities ε = 0.5, 1 and 2 (sparsely dashed
line, solid line and dashed line, respectively).

0 1 2 3 4 5

0.45

0.5

0.55

m
ax

Figure 4. ξmax as a monotonically decreasing function of the eccentricity ε for ellipsoids of
revolution. The dashed line marks ε = 1, the sphere, for which ξmax = 0.5 as in (48).

we consider them in their separable basis. The number of zeros of P m
n (cos θ) is n when

m = 0, and n − |m| + 2 otherwise. The number of nodal domains are, respectively, n + 1
and 2|m|(n − |m| + 1). The counting function for the 2n + 1 degenerate states with a given n
satisfies

n2 � N (n,m) < (n + 1)2. (49)

The ordering within the set is arbitrary, but in the limit of large n it is immaterial, since to
leading order we can write N (n,m) = n(n + 1)

(
1 + O

(
1
n

))
. Hence, the contribution of the

n-fold degenerate set to P(ξ) is

P(ξ ; n) = 1

n

n∑
m=1

δ

(
ξ − 2m(n − m + 1)

n(n + 1)

)
+ O

(
1

n

)

→
∫ 1

0
δ(ξ − 2µ(1 − µ)) dµ = 1√

1 − 2ξ
. (50)

12
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3.2. The next to leading terms

Several terms contribute O
(

1√
K

)
corrections. In the following we shall address them in detail.

3.2.1. The leading correction to P̄ (ξ, IK). Starting again from (39), we see that the m-
integration results in a sum of two terms, coming from the two branches of solutions of
ξ = mn(m)

A + m

2
√
EA + O

(
1
E
)

which constitute the two-point support of the δ function in the

integral. They differ by an amount δm±(ξ) of O
(

1√
E

)
from the values m±(ξ) which were

introduced for computation (44) of the limit distribution,

δm±(ξ) = − 1

2
√
E

m

mn′(m) + n(m)
+ O

(
1

E

)
, computed at m = m±(ξ). (51)

As long as (m + δm)± remain inside the integration range, one can proceed with the
computation towards the semi-classical asymptotic expansion

P̄ (IK) = P +
1√
K

P1 + O

(
1

K

)
. (52)

Of course, P is the limit distribution (42), and

P1(ξ) = −
√
A
2

√
1 + g − 1

g
(p−(ξ) + p+(ξ)), (53)

where p±(ξ) are given by

p±(ξ) =
1

n(m)

1 + mn′(m)

n(m)

∣∣∣∣∣
1 − mn′(m)

n(m)

1 + mn′(m)

n(m)

∣∣∣∣∣
⎡
⎢⎣−1 +

2m
(
mn′(m)

n(m)

)′

1 −
(
mn′(m)

n(m)

)2

⎤
⎥⎦ , computed at m = m±(ξ).

(54)

These expressions can be further simplified. To do so, we differentiate m±(ξ)n(m±(ξ)) = Aξ

with respect to ξ and get

n = Aξ

m
, n′ = n

(
1

ξ dm
dξ

− 1

m

)
, n′′ = n

⎛
⎜⎝ 2

m2
− 2

ξm dm
dξ

−
d2m
dξ 2

ξ
(

dm
dξ

)3

⎞
⎟⎠ , (55)

computed at m = m±(ξ). By substituting the above in the defining expressions for p±(ξ), we
obtain after some straightforward calculations

p±(ξ) = ± 1

A

(
dm±
dξ

+ 2ξ
d2m±
dξ 2

)
= ± 2

A
√

ξ
d

dξ

(√
ξ

dm±
dξ

)
. (56)

Hence,

P1(ξ) = −
√

2

A

√
1 + g − 1

g

√
ξ

d

dξ

(√
ξ

d

dξ
[m+(ξ) − m−(ξ)]

)
. (57)

This is an explicit expression which provides the leading correction in terms of the difference
m+(ξ) − m−(ξ) between the two branches of the parametric representation of �. Together
with (44) it forms the basis for the inversion procedure which will be discussed in detail in the
following section.

The conditions for the validity of the above approximation are not satisfied if ξ is
in the O

(
1√
K

)
neighbourhood of either 0 or ξmax. Near ξmax (51) diverges, while near

ξ = 0, (m + δm)± may lie outside of the integration range
[

1
2
√
E ,mmax

]
. To get the correct

13
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expressions for P̄ (ξ, IK) in the vicinity of the extreme values of ξ , we use several variations of
the same trick: within the problematic domains of integration, we approximate n(m) as a linear
function of m. The argument of the δ functions become quadratic functions of m. The support
of the δ functions can be evaluated explicitly, and the m-integrations can be performed exactly.
The remaining E-integrations turn out to be straightforward, so that explicit expressions for
P̄ (ξ, IK) in the vicinity of ξ = 0 and ξ = ξmax are obtained.

3.2.2. Behaviour of P̄ (ξ, IK) in the neighbourhood of ξ = ξmax. We recall that ξmax is
defined as the maximum value of mn(m)

A , which occurs at m0, where n(m0) + m0n
′(m0) = 0.

Thus, in the neighbourhood of m0 we can approximate n(m) ∼ n0 − n0
m0

(m − m0), where

n0 = n(m0) = Aξmax

m0
(the non-existence of other critical points is guaranteed by the twist

condition). With this approximation, the argument of the δ function in (39) is quadratic in m.
The integrations over m and E have to be carried out with attention to the requirement that
the support of δ remains within the integration range. After some lengthy but straightforward
manipulations, one gets

P̄ (ξ, IK) ∼ 2

gKηmax

∫ √
1

Kηmax√
1

(1+g)Kηmax




(
y − ζ

2

)
y−3 dy√

y2 + 2y − ζ
(58)

and

ηmax = (4n0)
2

2A
, ζ = ξ − ξmax

ξmax
. (59)

ηmax is another dimensionless parameter which characterizes P̄ (ξ, IK) near the borders of its
support. Performing the integral, we get

P̄ (ξ, IK) ∼ 1

gKηmax
(F (y↑, ζ ) − F(y↓, ζ )),

F (y, ζ ) =
(

1

ζy2
+

3

ζ 2y

)√
y2 + 2y − ζ

+

(
1

ζ
+

3

ζ 2

)⎧⎨
⎩

−1√|ζ |arctanh |ζ |+y√|ζ |
√

y2+2y−ζ
ζ � 0

1√
ζ

arctan −ζ+y√
ζ
√

y2+2y−ζ
ζ > 0,

y↑ =
√

1

Kηmax
, y↓ =

√
1

(1 + g)Kηmax
for ζ � 0,

y↑ =
√

1

Kηmax
, y↓ = max

{
ζ

2
,

√
1

(1 + g)Kηmax

}
for ζ > 0.

(60)

This expression includes the corrections to the limit distribution at its most noticeable
feature, namely its singularity at ξmax. For finite K, the square-root singularity is replaced
by a continuous function which reaches beyond ξmax, shifts the maximum from ξmax to

ξmax(K, g) = ξmax + 2
√

1
(1+g)Kηmax

and extends the support of P(ξ, IK) up to ξmax + 2
√

1
Kηmax

.

As K → ∞, the expression converges to the limit. The applications of the above theory for
an ellipsoid of revolution for two values of K are shown in figures 5 and 6.

3.2.3. Behaviour of P̄ (ξ, IK) in the neighbourhood of ξ = 0. In the neighbourhood
of ξ = 0 we have contributions from the support of the delta function in (39) from the
neighbourhood of m = 0, provided that (m + δm)− > 1

2
√
E , and m = mmax, provided that

14
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Figure 5. Local behaviour of P(ξ, IK) at ξ = ξmax for an ellipsoid of revolution with eccentricity
ε = 0.5 (K = 24 000 and g = 1).
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Figure 6. Local behaviour of P(ξ, IK) at ξ = ξmax for an ellipsoid of revolution with eccentricity
ε = 0.5 (K = 48 000 and g = 0.5).

ξ > 1
A
(
mn(m) + m

2
√
E

)
mmax

. Putting all contributions together, we have

P̄ (ξ, IK) ∼ 1

2

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 for 0 < ξ �
√

η−
K(1 + g)

1

g

1

1 − ξ/η−

[
(1 + g) − η−

Kξ 2

]
for

√
η−

K(1 + g)
< ξ �

√
η−
K

1

1 − ξ/η−
for

√
η−
K

< ξ

+
1

2

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 for 0 < ξ �
√

η0

K(1 + g)

1

g

1

1 − ξ/η+

[
(1 + g) − η0

Kξ 2

]
for

√
η0

K(1 + g)
< ξ �

√
η0

K

1

1 − ξ/η+
for

√
η0

K
< ξ.

(61)
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The most important feature in (61) is that it shifts the support of P̄ (ξ, IK) away from ξ = 0

to min
{√

η−
K(1+g)

,
√

η0

K(1+g)

}
. Note that most of the expressions which make up P(ξ, IK) in

the neighbourhood of ξ = 0 are confined to a ξ interval of size O
(

1√
K

)
. Beyond this interval(

1√
K

� ξ < ξmax
)
P(ξ, IK) takes the form

P(ξ, IK) ∼ 1

2

(
1

1 − ξ

η−

+
1

1 − ξ

η+

)
, (62)

which coincides with the small ξ expression of the limit distribution (46) to leading order in
ξ . To obtain the dominant behaviour of P(ξ, IK) near ξ = 0, one should add Pm=0(ξ, IK)

which we compute now.

3.2.4. The contribution of the m = 0 term in (30). Following the same steps as above, the
leading approximation to Pm=0(ξ, IK) reads

Pm=0(ξ, IK) ∼ 1

gK

∫ ∞

− 1
2

χIK

(
2AH

(
n +

1

2
, 0

))
δ

(
ξ − n + 1

2AH
(
n + 1

2 , 0
)
)

dn. (63)

This being already a correction term, we are allowed to neglect the semi-classical correction
1
2 to n in the argument of H

(
n + 1

2 , 0
)
. With H(n, 0) = (

πn
L
)2

from (20), we get

Pm=0(ξ, IK) ∼ 1

gK

∫ L
π

√
K(1+g)

2A

L
π

√
K
2A

δ

(
ξ − 1

n

L2

2Aπ2

)
dn. (64)

Therefore,

Pm=0(ξ, IK) ∼
⎧⎨
⎩

1

ξ 2

η−
gK

if
√

η−
K(1 + g)

� ξ <

√
η−
K

0 otherwise,
(65)

where η− is defined in (47). Both the shift of the support away from the origin ξ = 0 and
its size decrease as 1√

K
. In its support, Pm=0(ξ, IK) is bounded between the values 1

g
and

1 + 1
g

. However, although the contribution of this term to the probability density is O(1), its

effect on the probability is O
(

1
K

)
, or in other words, Pm=0(ξ, IK) = O

(
1
K

)
in the weak sense.

In this vicinity, Pm=0(ξ, IK) depends only on a single geometric parameter, η−. Note that a
priori, one would have expected the lower limit of the support of P̄ (ξ, IK) to be O

(
1
K

)
, and

not O
(

1√
K

)
. This prediction stems from the definition of the normalized nodal sequence (26);

for N > 1 we have the lower bound ξN � 2
N , so P(ξ, IK) ≡ 0 for ξ < 2

(1+g)K
, and not for

ξ < O
(

1√
K

)
as observed.

The oscillatory terms Q(IK) contribute terms of order 1√
K

in the ξ = 0 vicinity. They
originate from a Gibbs phenomenon and will be discussed in appendix B. Figures 6 and 7
compare the results of numerical simulations with the expressions derived above in the vicinity
of ξ = 0, and the theory includes also the oscillatory corrections (to be precise, with the
integrated density (ξ, IK) := ∫ ξ

0 P(ξ ′, IK) dξ ′).
The deviations of the theory from the numerical data in figures 5–8 are due to (i) the

sensitivity of the features of the distribution in the ξ = 0 and ξ = ξmax regions (e.g. the extent
of its support) to O

(
1√
K

)
errors, (ii) statistical error-bin size versus resolution and (iii) the

approximation used for the oscillatory part discussed in appendix B. All are justifiable for the
size of the spectral data set used.
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Figure 7. Local behaviour of (ξ, IK) at ξ = 0 for an ellipsoid of revolution with eccentricity
ε = 0.5 (K = 24 000, g = 1).
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Figure 8. Local behaviour of (ξ, IK) at ξ = 0 for an ellipsoid of revolution with eccentricity
ε = 0.5 (K = 48 000, g = 0.5).

3.3. The oscillatory contributions Q(ξ, IK)

3.3.1. Weak estimate of Q(IK). In this section we estimate the oscillatory part Q(ξ, IK),
defined in (32). We show that it is of smaller order in 1√

K
than the leading order correction

of the corresponding smooth part. This justifies the preceding analysis where we considered
only the smooth part, which gives the only contribution of O

(
1√
K

)
. The numerical results also

give evidence of this self-averaging process in the semi-classical limit.
To be more precise, we shall show that∫ 1

0
Q(ξ, IK)ϕ(ξ)dξ = o

(
1

K

)
(66)

for any test function ϕ. We shall follow a series of natural regularizations which are justified
in studying this weak limit. We shall also discuss the local behaviour of Q(ξ, IK) in the
neighbourhood of ξ = 0, in order to compare with the numerical results.
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We have Q(ξ, IK) = ∑
(N,M)
=0 QN,M(ξ, IK), where the Fourier components (33) are

approximated as

QN,M(ξ, IK) ∼ 1

gK

∫ (1+g)K/2A

K/2A
dE
∫ mmax

0
δ

(
ξ − mn(m)

A

)
|n(m)

−mn′(m)|e2π i
√
E(Mm+Nn(m)) dm. (67)

We now turn to a smoothing of this distribution by adding a small imaginary part to the
argument of the delta function, say ε > 0. This amounts to replacing the δ function by the
Lorentzian

δε(ξ) = 2Re
∫ ∞

0
e2π iξxe−2πεx dx = 1

π

ε

ε2 + ξ 2
. (68)

And so,

Qε
N,M(ξ, IK) ∼ ε

πgK

∫ (1+g)K/2A

K/2A

e2π i
√
E(Mm+Nn(m))

ε2 + (ξ − ξn(m),m)2
|n(m) − mn′(m)|dm. (69)

We must note here a qualitative difference between the semi-classical theory of the spectral
density and the nodal domain distribution. The index set IK = [K,K + �K] corresponds to
a spectral interval [EK,EK+�K ]. In the later case, as K → ∞, the eigenvalues are distributed
in an ever-growing interval, while the normalized nodal sequence is distributed in (0, 1],
becoming arbitrarily dense. So, in contrast to the regularization of the spectral density, in
general we do not expect the limits ε → 0+ and K → ∞ to commute for the nodal domain
distribution. We shall first consider the semi-classical limit.

Once again, by the linear approximation, we have n(m) = n± + n′
±(m − m±) + O

(
1√
E

)
,

and mn(m)/A = 1
A (n± + m±n′

±)(m − m±) + O
(

1√
E

) =: ξ ′
±(m − m±) + O

(
1√
E

)
.

By taking the whole real line as the m-integration range and shifting m �→ x = m − mσ

(σ = ±), we have

Qε
N,M(ξ, IK) ∼

∑
σ=±

ε

πgK
(nσ − mσn′

σ )

∫ (1+g)K/2A

K/2A
dE e2π iS

√
E
∫ ∞

−∞

e2π i
√
ERx

ε2 + (ξ − ξ ′
σ x)2

dx

=
∑

σ

1

gK

nσ − mσn′
σ

nσ + mσn′
σ

∫ (1+g)K/2A

K/2A
e

2π iS
√
E−2πε

√
E| R

ξ ′
σ

|
dE

=
∑

σ

2

gK

nσ − mσn′
σ

nσ + mσn′
σ

∫ √
(1+g)K/2A

√
K/2A

e
2π(iS−ε| R

ξ ′
σ

|)k
k dk, (70)

with (
R

S

)
=
(

n′
σ 1

nσ mσ

)(
N

M

)
.

Now, instead of a sharp uniform window (taking into account only those states whose
index lie in the interval IK ), we consider a Gaussian regularization

hK(k) = 1√
πv

exp(−(k − µ)2/v2), (71)

with µ =
√

1+g+1
2

√
K
2A and v = (

√
1 + g − 1)

√
K
2A , and extend the integration over the whole

real line (of course, this regularization does not affect the asymptotic behaviour we study):

Qε
N,M(ξ, IK) ∼

∑
σ=±

2√
πvgK

nσ − mσn′
σ

nσ + mσn′
σ

∫ ∞

−∞
e

2π(iS−ε| R

ξ ′
σ

|)k−(k−µ)2/v2

k dk
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=
∑

σ

2√
πvgK

nσ − mσn′
σ

nσ + mσn′
σ

e−µ2/v2
∫ ∞

−∞
e
−k2/v2+(2π iS−2πε| R

ξ ′
σ

|+2µ/v2)k
k dk

=
∑

σ

2v2

gK

nσ − mσn′
σ

nσ + mσn′
σ

(
π iS − πε

∣∣∣∣ Rξ ′
σ

∣∣∣∣ +
µ

v2

)

× exp

(
−π2v2S2 + π2ε2v2 R2

ξ
′2
σ

− 2π2iεv2
∣∣∣ R
ξ ′
σ

∣∣∣S + 2µπ iS − 2πµε

∣∣∣ R
ξ ′
σ

∣∣∣). (72)

We proceed towards a crude, yet sufficient for our purpose, estimate for Q(ξ, IK),

|Qε(ξ, IK)| �
∑

(N,M) 
=0

∑
σ=±

2v2

gK

∣∣∣∣nσ − mσn′
σ

nσ + mσn′
σ

∣∣∣∣
(

π |S| + πε

∣∣∣∣ Rξ ′
σ

∣∣∣∣ +
µ

v2

)

× exp

(
−π2v2S2 + π2ε2v2 R2

ξ
′2
σ

− 2πµε

∣∣∣∣ Rξ ′
σ

∣∣∣∣
)

. (73)

By taking into account that
∑

γ∈Z2 e−t (α·γ )2+
√

tβ·γ � 1
t

and
∑

γ∈Z2 |γ i |e−t (α·γ )2+
√

tβ·γ �
1

t3/2 , t → ∞, we have

|Qε(ξ, IK)| � O

(
1

K3/2

)
(74)

uniformly in ε (before the limit ε → 0+ is taken, all three terms in the amplitude of the
summed quantity contribute to this same order; µ

v2 � 1√
K

).

3.3.2. Local estimate of Q(ξ, IK) in the neighbourhood of ξ = 0. From the numerical
investigations, a clear oscillatory behaviour of the distribution is observed in the neighbourhood
of ξ = 0, which implies the importance of the oscillatory part in that region. This is due to a
Gibbs phenomenon, and is not in contradiction to the fact that the oscillatory part Q(IK) is of
less order in the weak sense than the smooth part P̄ (IK)—this is a local contribution.

We find the manifestation in the dominant terms
∑

N QN,0 and
∑

M Q0,M , which
agrees with the numerical results. The explicit form of these contributions are presented in
appendix B.

4. The geometric information stored in the nodal sequence

The derivation of the probability density P(ξ, IK) in the preceding section is based on functions
which are obtained directly from the dynamical relations embedded in the Hamiltonian and
its dependence on the action variables. These, in turn, are computed from the profile curve
y = f (x), which defines M. Here, we would like to investigate the possibility of inverting
this relationship, and ask what can be said about the surface once the nodal sequence is known.

A few parameters can be easily extracted from the probability density P(ξ, IK). Taking
the limit K → ∞ we get the limit distribution P(ξ). Its support provides the parameter ξmax.
In the vicinity of ξ = 0, P (ξ) depends symmetrically on the two parameters η− and η+. This
provides a useful relationship, which can be combined with the information from P(ξ, IK)

near ξ = 0, for finite K, which depends on all four (independent) geometric parameters,
η−, η+, η0 and ηmax. These parameters are related to the geometry of surface (47).

There are further reasons to extract the parameters {η−, η+, η0, ηmax}. First, these
parameters encapsulate the characteristic local features of the limiting distribution P(ξ) and
the various contributions to the semi-classical nodal distribution P(ξ, IK), even for the non-
mirror-symmetric M. This gives a basis for a computational approach to the scheme put
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forward: given a set of spectral data with sufficiently large K, the nodal domain distribution
can be constructed, and thus the geometric parameters can be recovered by a best-fit procedure
in the appropriate regimes of ξ . Second, the parameters are needed in the final step of the
nodal inversion algorithm, as will be made clear in what follows.

As was commented in the previous section, relations (44) and (57) can be solved to obtain
the two branches m−(ξ) and m+(ξ). Consequently, the function n(m) is determined, since
n(m±(ξ)) = Aξ

m±(ξ)
. This will be the first step towards the inversion of the nodal counting data

which will be explained in the following subsection.

4.1. Inversion of the nodal sequence

In this section we discuss nodal domain inversion in detail. The first result is: with
the distribution P̄ (IK) as given data, the ‘scale-invariant’ action n(m)/

√
A is determined

uniquely. For simple surfaces of revolution (separable systems in general with the Hamiltonian
satisfying the homogeneity condition), n(m) incorporates all the information about the
dynamics, and as we shall see in some cases, the actual geometry.

Our starting point is the semi-classical asymptotic expansion (52),

P̄ (ξ, IK) ∼ P(ξ) +
1√
K

P1(ξ), (75)

which, for convenience, we solve for P1(ξ),

P1(ξ) =
√

K(P̄ (ξ, IK) − P(ξ)) + O

(
1√
K

)
. (76)

Obviously, P and P1 are determined from the given data,

lim
K→∞

P̄ (IK) = P and lim
K→∞

√
K(P̄ (IK) − P) = P1. (77)

From relation (44),

P(ξ) = ξ
d

dξ
log

m−(ξ)

m+(ξ)
⇒ m+(ξ)

m−(ξ)
= exp

∫ ξmax

ξ

P (ξ ′)
ξ ′ dξ ′, (78)

the ratio m+(ξ)/m−(ξ) is determined, given P. Accompanying the above, we have relation
(57),

P1(ξ) = −
√

2

A

√
1 + g − 1

g

√
ξ

d

dξ

(√
ξ

d

dξ
[m+(ξ) − m−(ξ)]

)
, (79)

which can be inverted to give

u(ξ) := 1√
A

(m+(ξ) − m−(ξ)) = − 1√
2

g√
1 + g − 1

∫ ξ 1√
ξ ′

(∫ ξ ′
P1(ξ

′′)√
ξ ′′ dξ ′′

)
dξ ′. (80)

To determine u(ξ) uniquely, two integration constants should be provided, and they are given
in terms of the initial conditions for u(ξ) and du(ξ)

dξ
at the point ξ = 0 or ξ = ξmax. They are

expressed in terms of the geometric parameters {η−, η+, η0, ηmax}, which are extracted from
the form of P(ξ) near ξ = 0 and ξ = ξmax. Thus, the ratio and the difference between m+(ξ)

are m−(ξ) are given. Together with n±(ξ) = ξ A
m±(ξ)

, they give the parametric representation
of �. Note that we require no information from the statistical properties of the nodal counts
of the isotropic quantum states, i.e. Pm=0(IK).

The significance of this result becomes apparent in the following section, where we
confine ourselves to mirror-symmetric surfaces.
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4.2. Mirror-symmetric f (x) is uniquely determined by n(m)

Following the preceding section, we prove that if the generating curve f is mirror-symmetric
(i.e. f (−x) = f (x)) the action variable n(m) determines f uniquely.

Since f is an even function, we may write

n(m) = 2

π

∫ x+

0

√
f (x)2 − m2

√
1 + f ′(x)2

f (x)
dx, (81)

where f (x+) = m, or x+ = f −1(m). Changing the variable x �→ u = f (x)/mmax,

n(m) = 2

π

∫ 1

m/mmax

√
m2

maxu
2 − m2

u

√
1 + f ′ ◦ f −1(mmaxu)2

|f ′ ◦ f −1(mmaxu)| du. (82)

Suppose that f, g are different curves of this class which give the same action variable,
i.e.∫ 1

m/mmax(f )

√
mmax(f )2u2 − m2

u

√
1 + f ′ ◦ f −1(mmax(f )u)2

|f ′ ◦ f −1(mmax(f )u)| du

=
∫ 1

m/mmax(g)

√
mmax(g)2u2 − m2

u

√
1 + g′ ◦ g−1(mmax(g)u)2

|g′ ◦ g−1(mmax(g)u)| du, (83)

while f 
= g.
First, note that mmax(f ) = mmax(g). This is because mmax is the sole real root of n(m),

thus, since both sides of the above equality are proportional to n(m) they must have a common
root, denoted simply be mmax, since n(m) is analytic on (0,mmax]. Thus, since the integration
limits are identical, the integrands must be equal.

It suffices to show that
√

1+f ′◦f −1(y)2

|f ′◦f −1(y)| =
√

1+g′◦g−1(y)2

|g′◦g−1(y)| , for y ∈ [0,mmax], implies f = g.

From the above we have f ′ ◦f −1(y) = g′ ◦g−1(y). The problem has been reduced to showing
that the nonlinear operator Af = f ′ ◦ f −1 acting on our function class possesses an inverse,
i.e. Af = Ag ⇔ f = g.

Consider the inhomogeneous ‘functional’ equation f ′ ◦ f −1 = h, for some h in some
other appropriate function class. We shall show that for a given h, this determines, along
with some initial condition, a unique f , formally f = A−1h. We have f ′(f −1(y)) = h(y),
or f ′(x) = h(f (x)), since y = f (x). Thus, we have reduced this to a first-order ordinary
differential equation, y ′ = h(y). Accompanied by the initial condition f (0) = mmax, this
becomes an initial value problem on [0, 1] with a unique solution (h is smooth on [0, 1)).
Thus, A−1 exists and is unique.

In our problem, the initial condition is provided by knowledge of the root of n(m), so we
have reached the conclusion that the two integrals cannot equal if f 
= g.

5. Summary and conclusions

The unique inversion of the nodal sequence which was demonstrated above for symmetric
and ‘simple’ surfaces of revolution paves the way to a sequence of problems which should
now be addressed. Other families of compact separable manifolds are known, amongst
which the Liouville surfaces [18] and the axially symmetric Zoll surfaces [19] are of prime
importance. We believe that the general approach taken in the present paper could be applied to
handle these cases, however, modifications should be applied to take care of special problems
which are intrinsic to these systems, and this remains for a further study. Another class of
integrable/separable systems consists of independent particle models which are commonly
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used in atomic and nuclear physics. The study of such systems extends the research of nodal
domains to systems with arbitrary dimensions.

The next systems in complexity are systems which are classically integrable but are
not separable quantum mechanically. The simplest examples consist of, e.g., the Dirichlet
Laplacians in the equilateral or the isosceles right triangular domains. Even though the
spectrum can be expressed precisely in terms of the ‘quantum numbers’, counting of nodal
domains is difficult, and the study of the nodal sequences in such cases might call for other
approaches than the one pursued here.

Do nodal sequences in other systems store geometric information? Is there a way to
extract this information to determine the geometry? These are yet open problems, and the
only hint for an affirmative answer comes from preliminary numerical simulations which
indicate that ‘nodal’ trace formulae exist for ‘quantum graphs’ [11] and for ‘chaotic billiards’
[20]. No rigorous treatment exists so far.
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Appendix A. The regularization of the action integral

The action variable (5) is defined in terms of an integral, whose form is not convenient for
further computations, such as, e.g., the evaluation of its higher derivatives. This can be done
by regularizing the integral in a way which will be explained here. Rather than introducing
fractional derivatives as was done in, e.g. [15], we compute the integrals explicitly. It is
convenient to introduce the notations q(x) = f (x)2 and µ = m2. We start with

n(µ) = 1

π

∫ x+

x−

√
q(x) − µ

√
4q(x) + q ′(x)2

2q(x)
dx, where q(x±) = µ. (A.1)

The function q(x) is analytic in I and has a single maximum at xmax. We separate the integration
interval in (A.1) to two consecutive intervals [x−, xmax] and [xmax, x+] and write accordingly

n(µ) = n−(µ) + n+(µ). (A.2)

In each of the intervals [−1, xmax) and (xmax, 1], q(x) is a monotonic function. Therefore, it
can be inverted in each of the intervals in terms of the corresponding functions x±(q), which
are analytic in the interval [0, qmax). Thus,

n±(µ) = 1

π

∫ qmax

µ

√
q − µw±(q) dq, (A.3)

with

w±(q) = 1

2q

√
4q

(
dx±(q)

dq

)2

+ 1. (A.4)

The expression in the above square root is analytic in the domain of q where x±(q) are analytic,
that is, in [0, qmax). They can be Taylor expanded with a convergence radius qmax so that

w±(q) = 1

2q
+

∞∑
r=0

τ±
r qr . (A.5)
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Substituting these expressions in (A.3), performing the integrals and defining τr = τ +
r + τ−

r ,
we finally get

n(µ) = 2

π

[
(qmax − µ)

1
2 − µ

1
2 arccos

(
µ

qmax

) 1
2

]
+

1

π

∞∑
r=0

τrIr (µ), (A.6)

where

Ir(µ) =
∫ qmax

µ

qr
√

q − µ dq = (qmax − µ)
3
2

r∑
k=0

(
r

k

)
(qmax − µ)r−kµk

(r − k) + 3
2

. (A.7)

Using (7) we find

n(0) = L
π

= 1

π

√
qmax

[
2 +

∞∑
r=0

τrq
r+1
max

r + 3
2

]
. (A.8)

Thus in the vicinity of µ = 0, we get

n(µ) ∼ L
π

− √
µ. (A.9)

The behaviour of n(µ) near the other extreme end of the interval, µ = qmax, cannot be deduced
in the same way, because x(q) is not defined at this point. However, starting directly from
(A.1) we can obtain the behaviour of n(µ) in this domain. For this purpose, we write

q(x) ∼ qmax − 1

2
ω(x − xmax)

2, ω = |q ′′(xmax)|, x → xmax. (A.10)

To leading order in (qmax − µ), (A.1) reduces to

n(µ) ∼ 2

π
√

2ωqmax

∫ qmax

µ

√
q − µ

qmax − q
dq = qmax − µ√

2ωqmax
∼
√

2

ω
(fmax − |m|). (A.11)

Finally, we return to the example of the sphere. With f (x)2 = 1 − x2 the integrals can
be performed exactly,

n(m) = 1 − |m|. (A.12)

This is consistent with the local expressions presented in (A.9) and (A.11).

Appendix B. The oscillatory part near the origin

We recover the oscillatory behaviour of the distribution near ξ = 0 from the leading order
sums

Q(ξ, IK) ∼
∑
N∈Z∗

QN,0(ξ, IK) +
∑

M∈Z∗

Q0,M(ξ, IK). (B.1)

We begin with (33). As ξ → 0+, the contribution in the above integral will come from the
neighbourhoods of m = 0 and m = mmax (the delta function of the integrand is supported on
{m + δm}±). These will be treated separately, denoted by Q±

N,M(ξ, IK), respectively, so that

QN,M(ξ, IK) = Q−
N,M(ξ, IK) + Q+

N,M(ξ, IK). (B.2)

In what follows, we define x := ξ/η− when referring to the Q− terms, and x := ξ/η+ for the
Q+ terms.

Given that m− ∼ L
2π

x and δm− ∼ − 1
2ηx, by changing variables to the appropriate

dimensionless wave number k := L
√
E , we have

Q−
0,M(ξ, IK) ∼ 1

π2η−gK

e−π iMx/2

1 − x

∫ π
√

η−(1+g)K

π
√

η−K



(
k − π

x

)
eiMxk

(
k − π

2

)
dk. (B.3)
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Similarly, we carry out the calculation of the integral Q+
0,M(ξ, IK). Here, the condition that

(m + δm)+ lies in the integration range reads Aξ > (mn(m) + ηm)mmax = mmaxη,

Q+
0,M(ξ, IK) ∼ 1

η0gK

eπ iM
√

ω/2(1+x/2)

1 − x

∫ √
η0(1+g)K

√
η0K

×


(
k − 1

x

)
e2π iM(1−x/2)k

(
k −

√
ω/2

2

)
dk, (B.4)

where the appropriate wave number is k := mmax

√
E .

Following the above calculations,

Q−
N,0(ξ, IK) ∼ 1

π2η−gK

eπ iNx/2

1 − x

∫ π
√

η−(1+g)K

π
√

η−K



(
k − π

x

)
eiN(2−x)k

(
k − π

2

)
dk, (B.5)

and

Q+
N,0(ξ, IK) ∼ 1

η0gK

e−π iN(1+x/2)

1 − x

∫ √
η0(1+g)K

√
η0K




(
k − 1

x

)
eπ iN

√
ω/2xk

(
k −

√
2/ω

2

)
dk.

(B.6)

By performing the integrations, we have

∑
M∈Z∗

Q0,M(ξ, IK) ∼ 1

πη−gK

1

(1 − x)x2

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 for
√

η−
(1 + g)K

� ξ

f −
1 (ξ, IK) for

√
1

(1 + g)η−K
< ξ �

√
1

η−K

f −
2 (ξ, IK) for

√
1

η−K
< ξ

+
1

πη0gK

1

(1 − x)(2 − x)2

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 for
√

ω

2(1 + g)η0K
� ξ

f +
1 (ξ, IK) for

√
ω

2η0(1 + g)K
< ξ �

√
ω

2η0K

f +
2 (ξ, IK) for

√
ω

2η0K
< ξ,

where

f −
1 (ξ, IK) := α

(
1 − x

2

)
− α

(
x
√

η−K − x

2

)
+ x
√

η−Kβ
(
x
√

η−K − x

2

)
− β

(
1 − x

2

)
,

f −
2 (ξ, IK) := α

(
x
√

(1 + g)η−K − x

2

)
− α

(
x
√

η−K − x

2

)
+ x
√

η−Kβ
(
x
√

η−K − x

2

)
− x

√
(1 + g)η−Kβ

(
x
√

(1 + g)η−K − x

2

)
,

(B.7)

and

f +
1 (ξ, IK) := α

(
2

x
− 1 +

(
1 +

x

2

)√ω

2

)
− α

(
(2 − x)

√
η0K +

(
1 +

x

2

)√ω

2

)

+ 2
√

η0Kβ

(
(2 − x)

√
η0K +

(
1 +

x

2

)√ω

2

)
− 2

x
β

(
2

x
− 1 +

(
1 +

x

2

)√ω

2

)
,

f +
2 (ξ, IK) := α

(
(2 − x)

√
(1 + g)η0K +

(
1 +

x

2

)√ω

2

)
− α

(
(2 − x)

√
η0K +

(
1 +

x

2

)√ω

2

)
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+ 2
√

η0Kβ

(
(2 − x)

√
η0K +

(
1 +

x

2

)√ω

2

)

− 2
√

(1 + g)η0Kβ

(
(2 − x)

√
(1 + g)η0K +

(
1 +

x

2

)√ω

2

)
. (B.8)

Similarly,

∑
N∈Z∗

QN,0(ξ, IK) ∼ 1

πη−gK

1

(1 − x)(2 − x)2

×

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 for
√

η−
(1 + g)K

� ξ

g−
1 (ξ, IK) for

√
1

(1 + g)η−K
< ξ �

√
1

η−K

g−
2 (ξ, IK) for

√
1

η−K
< ξ

+
ω

2πη0gK

1

(1 − x)x2

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 for
√

ω

2(1 + g)η0K
� ξ

g+
1 (ξ, IK) for

√
ω

2η0(1 + g)K
< ξ �

√
ω

2η0K

g+
2 (ξ, IK) for

√
ω

2η0K
< ξ,

(B.9)

where

g−
1 (ξ, IK) := α

(
2

x
− 1 +

x

2

)
− α

(
(2 − x)

√
η−K +

x

2

)

+ 2
√

η−Kβ
(
(2 − x)

√
η−K +

x

2

)
− 2

x
β

(
2

x
− 1 +

x

2

)
,

g−
2 (ξ, IK) := α

(x

2
+ (2 − x)

√
(1 + g)η−K

)
− α

(x

2
+ (2 − x)

√
η−K

)
+ 2
√

η−Kβ
(
(2 − x)

√
η−K +

x

2

)
− 2

√
(1 + g)η−Kβ

(
(2 − x)

√
(1 + g)η−K +

x

2

)
,

(B.10)

and

g+
1 (ξ, IK) := α

(√
2

ω
− 1 − x

2

)
− α

(
x

√
2η0

ω
K −

(
1 +

x

2

))

+x

√
2η0

ω
Kβ

(
x

√
2η0

ω
K −

(
1 +

x

2

))
−
√

2

ω
β

(√
2

ω
−
(

1 +
x

2

))
,

g+
2 (ξ, IK) := α

(
x

√
(1 + g)

2η0

ω
K −

(
1 +

x

2

))
− α

(
x

√
2η0

ω
K −

(
1 +

x

2

))

+

√
2η0

ω
Kxβ

(
x

√
2η0

ω
K −

(
1 +

x

2

))
−
√

(1 + g)
2η0

ω
Kxβ

(
x

√
(1 + g)

2η0

ω
K −

(
1 +

x

2

))
.

(B.11)
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Above, we have made use of the periodic functions α and β, which we define via their
Fourier series,

α(t) := 1

π

∑
n∈Z∗

eπ int

n2
= 2

π

∑
n∈N

cos πnt

n2
(B.12)

and

β(t) := i
∑
n∈Z∗

eπ int

n
= −2

∑
n∈N

sin πnt

n
. (B.13)
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